TechTree

 Python Code : Machine Learining - Simple Linear Regression

By Vineet • Nov 13, 2025

## Importing the libraries

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

## Importing the dataset

dataset = pd.read_csv('Salary_Data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values

## Splitting the dataset into the Training set and Test set

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1/3, random_state = 0)

## Training the Simple Linear Regression model on the Training set

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)

## Predicting the Test set results

y_pred = regressor.predict(X_test)

## Visualising the Training set results

plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('Salary vs Experience (Training set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show()
 

## Visualising the Test set results

plt.scatter(X_test, y_test, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('Salary vs Experience (Test set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show()
 

Sample Data

Experience     Salary
1.1     39343
1.3     46205
1.5     37731
2     43525
2.2     39891
2.9     56642
3     60150
3.2     54445
3.2     64445
3.7     57189

Comments (1)

Leave a Comment